

Figure 2
Hodograph plane for flow of Figure 1, case E1.

Region I in the (x, t) plane is bounded by the detonation front OP, by the C+ characteristic OF, and by the C- characteristic PG. The Chapman-Jouget state along OP is represented by point "a" in Figure 2, and the forward-facing rarefaction of Region I lies on the Γ - curve ab. Point b in Figure 2 is the image of OF in Figure 1, which consequently has a slope $d t / d x=-2 / D$.

Reflection of the detonation wave from the free surface at $x=a$ (Figure 1) produces a rarefaction fan with straight C - characteristics centered at the point $P(x=a, t=a / D)$. The detonation gases are then accelerated into the void $(x>a)$ with limiting velocity D. Forward expansion is along af in Figure 2, and a region of overlap between the reflected rarefaction and the rarefaction following the detonation (the Taylor wave) is established as Region II of Figure 1.

For Region I:

$$
\begin{array}{ll}
\mathrm{C}+: & u+c=x / t \\
\mathrm{C}-: & u-c=-D / 2 \\
& u=(x / t-D / 2) / 2 \tag{2a}
\end{array}
$$

$$
\begin{align*}
& c=(x / t+D / 2) / 2 \tag{2b}\\
& \rho=8 \rho_{0}(x / t+D / 2) / 9 D \tag{2c}
\end{align*}
$$

Since Region I is a simple wave mapped on ab of Figure 2, any curve traversing Region I lies on ab. In particular the line PG, which separates Region II from Region I, lies on ab. PG is the leading Ccharacteristic of the fan passing through P of Figure 1, so

$$
(d x / d t)_{\mathrm{PG}}=u-c=(x-a) /(t-a / D)
$$

But, since PG maps onto ab of Figure 2, $u-c=$ $-D / 2$ and

$$
(x-a) /(t-a / D)=-D / 2
$$

PG is then parallel to OF, and for every other Ccharacteristic passing through P ,

$$
d x / d t=(x-a) /(t-a / D)>-D / 2
$$

For Region II:

$$
\begin{align*}
& \mathrm{C}-: \quad u-c=(x-a) /(t-a / D) \\
& \mathrm{C}+: \quad u+c=x / t \\
& u=[x / t+(x-a) /(t-a / D)] / 2 \tag{3a}\\
& c=[x / t-(x-a) /(t-a / D)] / 2 \tag{3b}\\
& \quad \rho=16 \rho_{0} c / 9 D \tag{3c}
\end{align*}
$$

Region II of Figure 1 maps into the triangle abf of Figure 2.

B. Case E2

The explosive is bounded at $x=0$ by a rigid backing and at $x=a$ by a void. The flow field is shown in Figure 3. Region I behind the detonation front is a simple wave centered at $(0,0)$. Reflection at the free surface produces a backward-facing wave centered at A. The interaction of this wave with the Taylor wave and the rigid boundary produces the distinct and identifiable regions shown. Region III is a uniform state bounded by the last characteristic of the Taylor wave, OH , the leading characteristic of the reflection fan, AC, and the rigid boundary. The necessity for such a uniform region is shown in Figure 4. Here the point " a " is the Chapman-Jouget

Figure 3
Flon field for confined explosive, case E2.

Figure 4
Hodograph mapping of flow field E1 of Figure 3.
state, and Region I lies along the Γ-characteristic ab. Region I terminates at $u=0$, the condition imposed by the rigid boundary. Region III of Figure 3 is then mapped into the single point "III" of Figure 4. A traverse around the point A from OA to AB lies on or very close to the $\Gamma+$ characteristic ac in Figure 4. Region II of Figure 3 is mapped into the quadrilateral acdr of Figure 4. The boundary characteristic, OH , lies along dr. Region IV is again a simple wave region mapped onto the $\Gamma+$ characteristic $u+c=D / 2$, shown in Figure 4. Region V is a mixed region resulting from interaction of the reflected rarefaction centered at A with its image in the $x=0$ plane. The t-axis from C upward maps into the $u=0$ axis, Or in Figure IV. The boundary CG corresponds to dr in Figure 4, and the open side of the triangular region V maps into Od of Figure 4. In symbols, these relations can be expressed as follows:

Region I: Same as Region I of Case E1.

Region II: \quad Same as Region II of Case E1.
Region III:

$$
\begin{align*}
& u=0 \tag{4a}\\
& c=D / 2 \tag{4b}\\
& \rho=8 \rho_{0} / 9 \tag{4c}
\end{align*}
$$

Region IV:

$$
\begin{align*}
\mathrm{C}+: & \quad u+c=D / 2 \\
\mathrm{C}-: & \quad u-c=(x-a) /(t-a / D) \\
u & =[D / 2+(x-a) /(t-a / D)] / 2 \tag{5a}\\
c & =[D / 2-(\mathrm{x}-\mathrm{a}) /(t-\mathrm{a} / D)] / 2 \tag{5b}\\
\rho & =16 \rho_{0} c / 9 D \tag{5c}
\end{align*}
$$

Region V:

$$
\begin{array}{ll}
\mathrm{C}+: & u+c=(x+a) /(t-a / D) \\
\mathrm{C}-: & u-c=(x-a) /(t-a / D) \\
& u=x /(t-a / D) \\
& c=a /(t-a / D) \\
& \rho=16 \rho_{0} a / 9 D(t-a / D) \tag{6c}
\end{array}
$$

